سفارش تبلیغ
صبا ویژن

دی الکتریک چیست؟ این مواد در ابتدا همگی عایق هستند؛ اما این معنای کاملی برای این مواد محسوب نمیشود: قطبی شدن این مواد در حضور یک میدان الکتریکی باید از جمله ویژگی الکتریکی اصلی این مواد باشد. از این رو کووردیریت( cordierite) اگر برای ساخت زیرلایه مورد استفاده قرار گیرد، به عنوان عایق در نظر گرفته میشود و اگر برای ساخت خازن مورد استفاده قرار گیرد، به عنوان دی الکتریک در نظر گرفته میشود.

مواد فروالکتریک

استحالهی پارا-فروالکتریک

برای برخی از مواد پارا الکتریک، کاهش دما باعث پدید آمدن یک قطبش خود به خود در یک دمای معین میشود که این دما، دمای کوری( Curie temperature) نامیده میشود. این استحاله تمام ویژگیهای یک استحالهی فازی را به نمایش میگذارد که پارامتر نظم است. در زیر دمای با دما تغییر میکند و پدیدهی پیروالکتریک را بوجود میآورد. فاز دما پایین فاز فروالکتریک نامیده میشود. این استحاله عموما با یک تغییر در ساختار همراه است. یک مثال بارز از این نوع استحاله در تیتانات باریوم( ) با ساختار پروسکایت( perovskite) است. در دمای بالاتر از این ماده( 120 درجهی سانتیگراد)، ساختار آن مکعبی و در دمای زیر ساختار تتراگونال است( شکل 1 را ببینید). در حالت فروالکتریک، قطبی شدن از جابجایی کاتیونها و آنیونها( به اندازهی 0.01 نانومتر) در جهت مخالف هم دیگر، بوجود میآید. با کاهش بیشتر دما تغییرات حاصله در ساختار کریستالی، تشدید میشوند اما ماده هنوز هم فروالکتریک باقی میماند( حلتهای فروالکتریک مختلف). نیروی محرکه نتیجهای از کاهش انرژی آزاد است.

انرژی تعاملی( interaction energy) دو دوقطبی برابر است با ، اگر میدان الکتریک بوجود آمده در دوقطبی 1 باشد که بوسیلهی دوقطبی 2 بوجود آمده است. این محاسبه نشان داد که این انرژی در مقایسه با محصول ، منفی است و در صورتی که دوقطبیها موازی باشند و هر دو بر خط واصل آنها عمود باشند، مقدار آن حداقل است. این منشأ فعل و انفعالی است که منجر میشود دوقطبیها در طول یک جهت متداول جهت گیری کنند. همچنین این مسئله پایداری حالت فروالکتریک را توضیح میدهد. به هر حال ایجاد دوقطبیهای دائمی مستلزم جابجایی یونهاست و این مسئله انرژی آزاد یک کمیت را که دارای منشأ الاستیک است، افزایش میدهد؛ یعنی

انرژی آزاد حالت پارا الکتریک است. برای تغییر شکلهای کوچک( )، پتانسیل فعل و انفعال میان یونها را میتوان به صورت هارمونیک در نظر گرفت:

که در این حالت دوقطبی شدن با تغییر شکل قابل قیاس است. بنابراین هر دو عبارت نسبت به p درجه دو هستند. با فرض کردن یک وابستگی دمایی خطی از سفتی( k)، انرژی آزاد( G) به صورت زیر بازنویسی میشود:

بنابراین حالت فروالکتریک برای دماهای کمتر از ، پایدار است. توجه کنید که هر چیزی که فکر میکنیم ممکن است اتفاق افتد، زیرا یک سفتی ظاهری( ) وجود دارد. در فاز پارا الکتریک، فرکانس یکی از حالتهای لرزش( vibration modes) در شبکه به عنوان حالت ملایم در نظر گرفته میشود:

این مقدار در دمای استحاله حذف میشود. یک تغییر شکل دائمی، مشابه چیزی که در حالت فروالکتریک رخ میدهد، میتواند به عنوان یک حالت لرزش تکی از فرکانس صفر در نظر گرفته شود.
قطبی شدن خود به خودی، قطبی شدنی است که در آن انرژی آزاد مینیمم است. برای ، است که این مسئله نشاندهندهی نامناسب بودن بسط تیلور درجه دو است. ما باید توزیع غیر متوازن را برای انرژی الاستیک در نظر بگیریم. که تنها با در نظر گرفتن این عبارت به صورت درجهی زوج، پلاریزاسیون

این مسئله همچنین اثبات شده است که استحاله از درجهی دو است. برای توصیف استحالهی دوجهی اول( مطابق با مشاهدات انجام شده بر روی تیتانات باریوم و چندین اکسید دیگر)، انرژی آزاد به عبارتی با درجهی بالا( تا درجهی 6) بسط داده میشود. روابط قبلی هنوز هم به خوبی برقرارند و تنها کافی است جایگزین کنیم.

مواد آنتی فروالکتریک

در موارد خاصی، جابجاییهای یونی انرژی آزاد را در دمای زیر ، مینیمم میکنند، اما بدون ظاهر شدن پدیدهی قطبی شدن خود به خودی. به هر حال، یک ثابت دی الکتریک نسبی ماکزیمم در این حالت دیده میشود که این مسئله به تغییر ساختاری مربوط است. حالت دما پایین در این وضعیت را آنتی فروالکتریک مینامند. برای مثال این مسئله در مشاهده میشود. جایگزینی زیرکونیوم با درصد کمی تیتانیوم کافی است تا حالت فروالکتریک را پایدار کند. این مسئله نشاندهندهی این است که این حالات دارای انرژیهای آزاد نزدیک هستند.

مواد مغناطیسی

تمام موادی که در داخل یک میدان مغناطیسی( ) قرار گیرند، از خود رفتار دیا مغناطیس نشان میدهند. این رفتار واکنشی از ماده است که ماده را در حضور میدان، متمایل به جدایش میکند. این کار بوسیلهی اصلاح توزیع فضایی الکترونها انجام میشود. مغناطش القا شده با قابل قیاس است اما رابطهی آنها معکوس است. وقتی برخی از یونهای جامد دارای پوستهی الکترونی ناقص هستند( و در نتیجه میزان اسپین کل غیر صفر حاصل میشود)، از این اثر که دارای دامنهی کوتاه است، میتوان صرفنظر کرد. آنها یک ممنتوم مغناطیسی با خود حمل میکنند که برابر است. که در اینجا مگنتون بور است. برخی ارقام در جدول1 آورده شده است. این جدول در مورد یونهای فلزات انتقالی و لانتانیدهاست.

انرژی دافعهی کلمبی دو الکترون بسته به اینکه اسپین آنها مشابه یا غیر مشابه باشد، متفاوت است. تفاوت در این انرژی، انرژی تبادلی( exchange energy) نامیده میشود. در مورد مواد عایق، تمام الکترونها را میتوان به صورت متمرکز شده بر روی هسته در نظر گرفت. انرژی تبادلی ابر الکترونی دو یون با اسپین

انرژی آزاد F( کمینهی حالت تعادلی)، تفاوت در توزیع انرژی U و توزیع آنتروپی TS است. بنابراین یک رقابت میان فرایند منظم شدن اسپینی( که تمایل دارد U را کاهش دهد) و تمایل به بی نظمی( افزایش آنتروپی) وجود دارد. در دمای بالا، توزیع آنتروپی برتری دارد و ماده پارامغناطیس است. در طی سرمایش، ظاهر شدن یک نظم مغناطیسی برای دمای بحرانی ، امکان پذیر است.

پارامغناطیس

در حالت پارامغناطیس، استفاده از میدان مغناطیسی باعث میگردد تا مغناطش در ماده ایجاد گردد که این مغناطش با میدان مغناطیسی قابل مقایسه است و با آن رابطهی مستقیم دارد:

پارامتر میتوان مثبت یا منفی باشد. این مقدار وقتی منفی است که ماده در دمای پایین، فرو یا فری مغناطیس شود و وقتی مثبت است که ماده آنتی فری مغناطیس شود یا نظم مغناطیسی در دمای پایین وجود ندارد.

آنتی فری مغناطیس

در اکسیدها، هر کاتیون بوسیلهی یونهای اکسیژنی احاطه شدهاند که اسپین صفر دارند و میان کنش تبادلی میان کاتیونها غیر مستقیم است. اگر این میان کنش منفی باشد، هم ترازی غیر موازی اسپین ها را در زمانی که تنها یک نوع از کاتیونها مکانهای یکسان را اشغال کردهاند، بیشتر میشود. این مواد در زیر یک دمای بحرانی، آنتی فری مغناطیس است. این دمای بحرانی دمای نیل( Neel temperature) نامیده میشود و با نشان داده میشود. در این حالت، مغناطش خود به خود وجود ندارد؛ کاتیونها و آنیونهای داخل شبکهای همدیگر را خنثی میکنند. به هر حال، نظم مغناطیسی میتواند با استفاده از تفرق نوترون ثابت شود. این روش بر روی اکسیدهای دوتایی فلزات انتقالی و یا حتی بر روی فریت روی( ) اعمال میشود( جدول 2 را ببینید).

فری مغناطیس

اشغال مکانهای مختلف با کاتیونهای مختلف باعث ایجاد رفتار پیچیدهای میشود. یک مثال خوب در فریت ها، با ساختار اسپینل است. این ماده شامل 8 مکان تتراهدرال A و 16 مکان اکتاهدرال B در هر سلول است. انتگرالهای تبادلی ، و تماما منفی هستند و میانکنش A-B غالب است. در نتیجه اسپینهای کاتیونهای A موازی همدیگر است و همچنین اسپینهای کاتیونهای B نیز موازی همدیگرند(اما در جهات مختلف). بنابراین در مورد مادهی ، نیمی از یونهای در مکانهای A و نیمی دیگر در مکانهای B قرار میگیرند و یونهای مکانهای باقی ماندهی B را اشغال میکنند. مومنتوم ایجاد شده برابر یا حتی ( در ) است. مقدار کوچک شعاع یونی ، علت برتری مختصات تتراهدرال را نشان میدهد. جایگزینی نیکل با روی، با انتقال یونهای از مکانهای تتراهدرال به مکانهای اکتاهدرال، انجام میشود( شکل 2 را ببینید). برای درصد بالاتر از 40 % از روی، اثر رقیق شدن یونهای مغناطیسی و همچنین ضعیف شدن میان کنش تبادلی A-B علت کاهش مغناطش را توضیح میدهد.

وقتی جانشینی کامل شود، یونهای در ، تنها مکانهای اکتاهدرال را اشغال میکنند. این ماده همانطور که قبلا بدان اشاره شد، یک مادهی آنتی فری مغناطیس است.
ویژگیهای مغناطیسی گارنتهای آهنی میتواند به همیم منوال تفسیر شود. آنها اکسیدهایی با فرمول عمومی یا هستند که c در فرمول قبل نشاندهندهی مکانهای 12 سطحی، a نشاندهندهی مکانهای اکتاهدرال و d نشاندهندهی فضاهای تتراهدرال در گارنت است. M یون فلزی غیر مغناطیس و سه ظرفیتی است( که اغبا ایتریم است). مومنتم مغناطیسی ایجاد شده در ، برابر است. اگر یونهای M از لانتانیدها باشند، آنها همچنین در مغناطش کلی شرکت دارند. از آنجایی که هر دوتای این بخشهای مغناطش، به طور متفاوت با دما تغییر میکنند، یک تغییر ویژه در مغناطش خود به خودی نسبت به تغییر دما، دیده میشود( شکل 3).

ما باید همچنین توجه کنیم هگزافریت ها دارای ساختار مگنتوپلمبیت( magnetoplumbite)( تقارن هگزاگونال) و ترکیب شیمیایی هستند. که در اینجا یک کاتیون دو ظرفیتی است. این ممکن است که سایر یونهای سه ظرفیتی مانند و غیره را جایگزین یونهای کرد.
در تمام ترکیبات، کنترل توزیع کاتیونها در مکانهای مختلف مشکل است. این مسئله به دما و فشار جزئی اکسیژن بستگی دارد که میزان اکسیداسیون را کنترل میکند و اگر حالت تعادل قابل دستیابی نباشد، حتی شرایط سرد کردن را نیز کنترل میکند. ما وقتی که تصحیحهای جزئی در زیر ساختارهای مختلف وجود داشته باشد، از واژهی فری مغناطیس استفاده میکنیم.
جهت متداول اسپین قراردادی نیست اما آن را میتوان به وسیلهی یک میان کنش اسپین- شبکه (از طریق حرکت اربیتالی الکترونها) تعیین نمود. در مورد تقارن مکعبی، انرژی میان کنش به عنوان تقریب اول به صورت زیر محاسبه میشود:

اگر زوایای تعریف شده جهت گیری مغناطشهای خود به خودی نسبت به سه محور ساختار کریستالوگرافی باشند. اگر K ثابت مثبت باشد، جهت آسان مغناطش برابر جهت است( در مورد برعکس، این جهت آسان مغناطش برابر است). برای دیدن مثالهای بیشتر، جدول 3 را ببینید.

این میانکنش هنوز در منبع الاستیسیتهی مغناطیسی قرار دارد یعنی یک تغییر شکل ماده تحت اثر میدان مغناطیسی. در مقابل، یک تنش باعث القای مغناطش میشود. در مورد یک سرامیک، تنشهای داخلی که در طی زینترینگ به وجود میآیند، به احتمال زیاد تراوایی مؤثر ماده را کاهش میدهد.
در سرد کردن، ماده به دمینهای مغناطیسی یکنواخت تقسیم میشود، که دمینهای ویس (weiss domains) نامیده میشوند. جهت گیری مجدد دمین ها تحت اثر میدان مغناطیسی منشأ حلقهی پسماند( ) است (شکل 4 را ببینید). این حلقه مشابه حلقهی سیکل پسماند در مواد فری الکتریک است. فری الکتریسیته و فرو (فری) مغناطیس به طور رسمی به صورت چندین الگوریتم نشان داده میشوند.

منبع: Philippe Boch and Jean-Claude Niepce/ ceramic materials( processing, properties and applications).







تاریخ : شنبه 92/1/31 | 9:48 صبح | نویسنده : مهندس سجاد شفیعی | نظرات ()
.: Weblog Themes By BlackSkin :.